Biotechnological Potential of Agro Residues for Economical Production of Thermoalkali-Stable Pectinase by Bacillus pumilus dcsr1 by Solid-State Fermentation and Its Efficacy in the Treatment of Ramie Fibres

نویسندگان

  • Deepak Chand Sharma
  • T. Satyanarayana
چکیده

The production of a thermostable and highly alkaline pectinase by Bacillus pumilus dcsr1 was optimized in solid-state fermentation (SSF) and the impact of various treatments (chemical, enzymatic, and in combination) on the quality of ramie fibres was investigated. Maximum enzyme titer (348.0 ± 11.8 Ug(-1) DBB) in SSF was attained, when a mixture of agro-residues (sesame oilseed cake, wheat bran, and citrus pectin, 1 : 1 : 0.01) was moistened with mineral salt solution (a(w) 0.92, pH 9.0) at a substrate-to-moistening agent ratio of 1 : 2.5 and inoculated with 25% of 24 h old inoculum, in 144 h at 40°C. Parametric optimization in SSF resulted in 1.7-fold enhancement in the enzyme production as compared to that recorded in unoptimized conditions. A 14.2-fold higher enzyme production was attained in SSF as compared to that in submerged fermentation (SmF). The treatment with the enzyme significantly improved tensile strength and Young's modulus, reduction in brittleness, redness and yellowness, and increase in the strength and brightness of ramie fibres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of the Cellulase Free Xylanase Production by Immobilized Bacillus Pumilus

Background: The extracellular xylanase secreted by microorganisms is a hydrolytic enzyme, which arbitrarily cleaves the β-1, 4 backbone of the polysaccharide xylan; an enzyme used in the food processing, bio-pulping and bio-bleaching. The commercial production of the xylanase is limited because of a higher cost involvement, which can be overcome by the cost-effective production...

متن کامل

Evaluation of Ca-Independent a-Amylase Production by Bacillus sp. KR-8104 in Submerged and Solid State Fermentation Systems

This study investigates the production of crude Ca-independent and low pH active α-amylase by Bacillussp. KR-8104 in submerged fermentation (SmF) and solid-state fermentation (SSF) systems. Differentparameters were evaluated in each system using “one factor at a time” approach to improve the production ofenzyme. The results showed that in the SmF the maximum enzyme production ...

متن کامل

Influence of Different Nitrogen Sources on Amount of Chitosan Production by Aspergillus niger in Solid State Fermentation

In this study the effect of different nitrogen source substrates on the amount of chitosan production by Aspergillus niger was investigated. A. niger PTCC 5012 from the Persian Type Culture Collection (PTCC) was grown on soy bean, corn seed and canola residues at 30 °C for specified cultivation days under sterilized conditions. ...

متن کامل

β-galactosidase Production by Aspergillus niger ATCC 9142 Using Inexpensive Substrates in Solid-State Fermentation: Optimization by Orthogonal Arrays Design

Background: Enzymatic hydrolysis of lactose is one of the most important biotechnological processes in the food industry, which is accomplished by enzyme β-galactosidase (β-gal, β-D-galactoside galactohydrolase, EC 3.2.1.23), trivial called lactase. Orthogonal arrays design is an appropriate option for the optimization of biotechnological processes for the production of microbial...

متن کامل

A comparison on Lipase Production from Soybean meal and Sugarcane Bagasse in Solid State Fermentation using Rhizopus oryzae

In this study, solid-state fermentation of two types of agricultural residues/products for lipase production in a tray-bioreactor was investigated. Rhizopus oryzae was used as a potential fungus strain and two types of agricultural residues including soybean meal and sugarcane bagasse were utilized as substrate. Fermentation was carried out in two different operational conditions: one with cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012